Engineered microbial systems for enhanced conversion of lignocellulosic biomass.
نویسندگان
چکیده
In order for plant biomass to become a viable feedstock for meeting the future demand for liquid fuels, efficient and cost-effective processes must exist to breakdown cellulosic materials into their primary components. A one-pot conversion strategy or, consolidated bioprocessing, of biomass into ethanol would provide the most cost-effective route to renewable fuels and the realization of this technology is being actively pursued by both multi-disciplinary research centers and industrialists working at the very cutting edge of the field. Although a diverse range of bacteria and fungi possess the enzymatic machinery capable of hydrolyzing plant-derived polymers, none discovered so far meet the requirements for an industrial strength biocatalyst for the direct conversion of biomass to combustible fuels. Synthetic biology combined with a better fundamental understanding of enzymatic cellulose hydrolysis at the molecular level is enabling the rational engineering of microorganisms for utilizing cellulosic materials with simultaneous conversion to fuel.
منابع مشابه
Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process
BACKGROUND Microbial lipid production by using lignocellulosic biomass as the feedstock holds a great promise for biodiesel production and biorefinery. This usually involves hydrolysis of biomass into sugar-rich hydrolysates, which are then used by oleaginous microorganisms as the carbon and energy sources to produce lipids. However, the costs of microbial lipids remain prohibitively high for c...
متن کاملLignocellulose-Degrading Microbial Communities in Landfill Sites Represent a Repository of Unexplored Biomass-Degrading Diversity
The microbial conversion of lignocellulosic biomass for biofuel production represents a renewable alternative to fossil fuels. However, the discovery of new microbial enzymes with high activity is critical for improving biomass conversion processes. While attempts to identify superior lignocellulose-degrading enzymes have focused predominantly on the animal gut, biomass-degrading communities in...
متن کاملEngineering Shewanella oneidensis enables xylose-fed microbial fuel cell
BACKGROUND The microbial fuel cell (MFC) is a green and sustainable technology for electricity energy harvest from biomass, in which exoelectrogens use metabolism and extracellular electron transfer pathways for the conversion of chemical energy into electricity. However, Shewanella oneidensis MR-1, one of the most well-known exoelectrogens, could not use xylose (a key pentose derived from hydr...
متن کاملBioremediation of lignocellulosic wastes of food industries by Aspergillus flavus as food and feed additive protein by solid-state fermentation process
The lignocellulosic wastes produced in food industries are suitable raw materials for the production of biological products. In this study, the solid state fermentation of Aspergillus flavus on lignocellulosic wastes was evaluated for microbial protein production. The fraction of the full factorial method was applied for experiment design and process optimization. The results analysis was perfo...
متن کاملDirect conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.
Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current opinion in biotechnology
دوره 21 5 شماره
صفحات -
تاریخ انتشار 2010